				Page : 1 of 10
KLM Technology Group	KLM	Technology Group		Rev: 01
Project Engineering Standard	www.klmt	echgroup.com	1	April 2011
KLM Technology Group #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malavsia	OFF SHORE SKID PACKAGE PIPING DESIGN CRITERIA			
	(PROJECT STANDARDS AND SPECIFICATIONS)			

TABLE OF CONTENT

SCOPE	2
REFERENCES	2
ENVIRONMENTAL DESIGN CRITERIA AND UTILITIES	6
Seismic and Transportation Loads	6
Design Life	7
Dimensions	7
DESIGN REQUIREMENTS	7
FLEXIBILITY ANALYSIS CRITERIA & GENERAL GUIDELINES	9
FIRE SUPPRESSION SYSTEM	10

KLM Technology Group

OFF SHORE SKID PACKAGE PIPING DESIGN CRITERIA

Page 2 of 10

Rev: 01

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

SCOPE

This Project Standard and Specification outlines to the minimum and mandatory requirements of designs activities for piping, piping components, piping specialties including piping within battery limits of various skids/ package/ modules etc.

All piping assemblies, specialties & materials supplied or installed under these specifications shall be in accordance with sound engineering principles. Any omission from this specification shall not relieve the contractor from his responsibility of furnishing equipment or materials to meet the specific process parameters, environmental parameters, safety parameters and any other applicable statutory laws or relevant codes & standards.

REFERENCES

Throughout this Standard the following dated and undated standards/codes are referred to. These referenced documents shall, to the extent specified herein, form a part of this standard. For dated references, the edition cited applies. The applicability of changes in dated references that occur after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated references, the latest edition of the referenced documents (including any supplements and amendments) applies.

- 1. ASME B1.20.1 Pipe threads
- 2. ASME B16.5 Pipe flanges and flanged fittings
- 3. ASME B16.9 Factory made wrought steel butt-welding fittings
- 4. ASME B16.10 Face-to-face & end-to-end dimensions of valves
- 5. ASME B16.11 Forged fittings (socket welding and threaded)
- 6. ASME B16.20 Metallic Gaskets for pipe flanges: Ring joint spiral wound and jacketed.
- 7. ASME B16.21 Non-metallic flat gaskets for pipe flanges
- 8. ASME B16.25 Butt welding ends
- 9. ASME B16.34 Valves- flanged, threaded & welding ends
- 10. ASME B31.3 Process piping
- 11. ASME B31.4 Pipe line transportation systems for liquid hydro carbons and other liquids.
- 12. ASME B31.8 Gas transmission and distribution piping system
- 13. ASME B36.10 M Welded and seamless wrought steel pipe
- 14. ASME B36.19 M Stainless steel pipe

KLM Technology	OFF SHORE SKID PACKAGE	Page 3 of 10	
Group	PIPING DESIGN CRITERIA	Rev: 01	
Project Engineering Standa	Project Engineering Standard (PROJECT STANDARDS AND SPECIFICATIONS)		
15. ASME SEC. VIII	Pressure vessel code		
16. ASME SEC.IX	Welding and brazing qualifications		
17. ASTM A105	Specification for forgings. Carbon steel, components	for piping	
18. ASTM A106	Specification for seamless carbon steel p temperature service	ipe for high	
19. ASTM A 153	Zinc coating (hot dip) on iron & steel hardware)	
20. ASTM A 182	Specification for forged or rolled alloy steel forged fittings & valves and parts for high service.		
21. ASTM A193	Specification for alloy steel & stainless materials for high temperature service.	steel bolting	
22. ASTM A 194	Specification for carbon & alloy steel nuts for bolts for high pressure & high temperature service		
23. ASTM A216	Specification for carbon steel casting suitable for fusion welding for high temperature service.		
24. ASTM A234	Specification for piping fittings of wrought ca alloy steel for moderate & elevated temperature		
25. ASTM A262	Recommended practice for detecting suscept granular corrosion attack in stainless steels	tibility to inter	
26. ASTM A 312	Specification for seamless & welded auster steel pipe	nitic stainless	
27. ASTM A370	Test methods and definitions for mechanic steel products	al testing of	
28. ASTM A403	Specification for wrought, austenitic stainless fittings	steel, piping	
29. ASTM A453	Specification for bolting materials high temp 120 ksi with expansion coefficient comparable steels		
30. ASTM A578	Straight beam ultrasonic examination of plair for special applications.	a & clad steel	
31. ASTM A 694	Std specs. For forgings, carbon and alloy s flanges, fittings, valves & parts for l transmission service	steel for pipe nigh-pressure	
32. ASTM A 790	Seamless and welded ferritic/austenitic stainle	ess steel pipe	
33. ASTM A 799	Std. practice for steel castings, stainles calibration for estimating ferrite content.	s instrument	

KLM Technology			
Group	FIFING DESIGN CRITERIA	Rev: 01	
Project Engineering Standa	rd (PROJECT STANDARDS AND SPECIFICATIONS)	April 2011	
34. ASTM B42	Std. spec. For seamless copper pipe		
35. ASTM B 124		a rod bar and	
55. ASTM B 124	Std. spec. For copper and copper alloy forging shapes.	g rou, bar anu	
36. ASTM B 165	Std. spec. For nickel copper alloy (UNS440 pipe and tube	00) seamless	
37. ASTM B 337	Std. spec. For seamless and welded titanium and titanium alloy pipe		
38. ASTM B 363	Std. spec. for unalloyed titanium and titanium alloy welding fittings		
39. ASTM B 366	Std. spec. for factory made wrought nickel and nickel alloy welding fittings.		
40. ASTM B 423	Std. specs. for nickel-iron-chromiummolybdenum copper alloy (UNS no.8825&8221) seamless pipe and tube		
41. ASTM B 425	Std. spec. for NI-FE-CR-MO- CU alloy (UNS no. 8825 & 8221) rod & bar.		
42. ASTM B466	Std spec. for seamless copper nickel pipe and	l tube	
43. ASTM D 1785	Spec. for poly vinyl chloride (PVC) plastic pipe		
44. ASTM D 2665	Spec. for poly vinyl chloride (PVC) plastic drain, waste and vent pipe fittings		
45. ASTM E18	Rockwell hardness testing of metallic material	S	
46. ASTM E 45	Determining inclusion content of steel		
47. ASTM E 92	Vickers hardness of metallic materials		
48. ASTM B 142	Controlling quality of radiographic testing		
49. ASTM E 165	Liquid penetrant inspection method		
50. ASTM E 709	Recommended practice for magnetic particle	examination.	
51. API 5 L	Line pipe Specification		
52. API 6A	Wellhead and Chrismas tree Equipment		
53. API 6D /			
ISO 14313	Petroleum and natural gas indus Transportation system – Pipeline valves	stries-Pipeline	
54. API 6FA	Fire test for valves		
55. API RP 14C	Analysis, design, installation testing for b safety system	oasic surface	
56. API RP 14E	Design and installation of offshore production platform piping system		

KLM Technology	OFF SHORE SKID PACKAGE PIPING DESIGN CRITERIA	Page 5 of 10	
Group	FIFING DESIGN CRITERIA	Rev: 01	
Project Engineering Standa	rd (PROJECT STANDARDS AND SPECIFICATIONS)	April 2011	
57. API RP 14G	Fire prevention and control on open ty production platform.	ype offshore	
58. API 598 59. API 600 /	Valve inspection and testing		
ISO 10434	Steel gate valves, flanged and butt-welded through nps 24)	ends (nps 1	
60. API 607	Fire test for soft-seated Quarter turned valves		
61.BS 1868	Spec. for steel check valves (flanged &butt v for the petroleum petrochemical & allied indus	Q ,	
62.BS 1873	Spec. for steel globe and globe stop and check valves (flanged & butt welding ends) for the petroleum, petrochemical & allied industries.		
63.BS EN 1092-3	Flanges and their joints. Circular flanges for p fittings and accessories, PN designated (Flanges.		
64. BS EN ISO 17292 Metal Ball Valve For The Petroleum, Petrochemical And Allied Industries			
65. BS EN ISO 5761	Steel Gate, Globe & Check valves For DN 100 and Smaller, For Petroleum and Natural Gas Industries		
66.BS 5353	Specification For Steel Plug Valve		
67.BS 6755-2	Testing Of Valves. Specification for Fire Type-Testing requirements.		
68. MSS SP 44	MSS Steel Pipe Line Flanges		
69. MSS SP 75	Spec. For High Test Wrought Butt Welding Fit	tings	
70. NACE MR 01-75/			
ISO 15156-1/2/3	Material for use in H2S containing environme Gad Production.	nts in Oil and	
	Part-1: General principles for Selection resistant Materials.	of Cracking	
	Part-2: Cracking resistant Carbon and Low C and the use of Cast irons.	arbon Steels,	
	Part-3: Cracking resistant CRAs (Corrosi alloys) and other alloys.	on Resistant	
71.NACE TM-01-77	Laboratory-Testing Of Metals For Resistance Stress Cracking and stress corrosion crack Environments		

KLM Technology	OFF SHORE SKID PACKAGE PIPING DESIGN CRITERIA	Page 6 of 10
Group		Rev: 01
Project Engineering Standa	rd (PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
72.NACE-TM-02-84	Evaluation Of Pipeline and pressure vess Resistance To Hydrogen induced Cracking	el steels for
73. NFPA-Volume-6	National Fire Code For Sprinklers, Fire Pump Tanks	os And Water
74. NFPA Volume 8	National Fire Code For Portable And Manua Equipment.	I Fire Control
75.NFPA 15	Standard for Water spray fixed systems for fire	e protection.
76. ASTM D 2996	Specifications For Filament Wound Thermosetting Pipes & Fittings.	Reinforced
77. ASTM D 2992	Method For Obtaining Hydrostatic Design Basis For Reinforced Thermosetting Resin Pipes & Fittings.	
78. ASTM A 815	Specification for wrought ferritic, ferritic/au martensitic stainless steel piping fittings.	ustenitic and
79. ASTM G 36	Performing stress corrosion-cracking tests magnesium chloride	in a boiler
80. ASTM G 48A/B	Standard Test Method For Pitting & Crevice Corrosion Resistance of Stainless Steel & Related Alloy By Use Of Ferritic Chloride Solution	
81. ASME B16.24	Cast Copper Alloy Pipe Flanges and flang Classes 150, 300, 400, 600, 900, 1500 and 25	
82. ASME B 16.18	Cast Copper Alloy Solder Joint Pressure Fittin	gs
83. MSS-SP-80	Bronze Gate, Globe, Angle and Check Valve	
84. MSS-SP-97	Integrally reinforced forged branch outlet F Welding, Threaded and Butt Welding Ends	ittings-Socket

ENVIRONMENTAL DESIGN CRITERIA AND UTILITIES

Seismic and Transportation Loads

All equipment supports and braces, pipe supports and other support steel work, including temporary braces, shall be designed to withstand seismic loads applicable to the present location. Refer to the Structural Basis of Design for seismic design considerations.

All equipment supports and braces, pipe supports and other support steel work, including temporary braces, shall be designed to withstand the operating, lifting, transport (by road and by sea) and hydro-test loads specified in Project Standard and Specification.

KLM Technology Group

OFF SHORE SKID PACKAGE PIPING DESIGN CRITERIA

Page 7 of 10

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

Rev: 01

Design Life

The process facilities design life requirement is 25 years.

Dimensions

SI units shall be used. Dimensions shall be in mm and be related to the Platform datum's or reference lines.

DESIGN REQUIREMENTS

All materials shall conform to Project Standard and Specification and the identified API, ASME, ASTM, BS and NACE codes and Standards.

Design and fabrication shall conform to this Specification and ASME B31.3, API RP14E. In case, any other applicable codes are proposed/ referred the same shall be complied with sufficient information/justification after approval by company.

From piping of pig-barrel of Launcher/Receiver up to piping-pipeline interface shall be designed as a minimum to ASME B 31.4 and ASME B 31.8.

For smooth pigging operation, attempts shall be made to keep the ID of the piping from reducer of pig-Barrel to pipeline–piping interface as close as possible to the ID of the riser in splash zone.

In case, ID of the topside is more than the the ID of the riser, thickness of the topside piping shall be increased to match the ID's.

If the ID of the topside piping is less than that of riser in splash zone, thickness of the topside piping may be adjusted to match the ID's by:

- Considering the actual design conditions of the line in place of class conditions for pipe wall thickness calculations.
- Reducing the corrosion allowance for topside piping but not less than the internal corrosion allowance in corresponding pipeline.

In case, the difference in ID's still exists, ID of the topside piping shall be checked for the passage of gauge plate with out interference. The gauge plate Diameter shall be calculated by the formula given in the 'specification of submarine pipelines'.

All cupro-nickel piping shall be supplied in 14-bar system.

Velocity in Cu-Ni piping shall not exceed 1.6 m/sec for 2" NB and below and 3.3 m/sec. for 3" NB and above.

Fluid velocities in copper piping shall not exceed 1.5 m/sec.