			Page : 1 of 92
KLM Technology Group	KLM	Technology Group	Rev: 01
Project Engineering Standard	www.klmt	echgroup.com	April 2011
KLM Technology Group #03-12 Block Aronia, Jalan Sri Perkasa 2	OFF SHORE TECHNICAL SAFETY (PROJECT STANDARDS AND SPECIFICATIONS)		
Taman Tampoi Utama 81200 Johor Bahru Malaysia			

TABLE OF CONTENT

SCOPE	6
REFERENCES	6
DEFINITIONS AND TERMINOLOGY	8
SYMBOLS AND ABBREVIATIONS	10
MANAGEMENT OF TECHNICAL SAFETY	11
General	11
Risk Reduction Principles – Inherent Safety Design	12
Safety Performance Standards	12
Qualification of Technology	13
Experience Transfer	13
Integrity – Availability and Reliability	13
Dimensioning Accidental Load (DAL)	14
Documentation	15
LAYOUT	16
Role	16
Interfaces	16
Required utilities	16
Functional requirements	16
Survivability Requirements	20
STRUCTURAL INTEGRITY	20
Role	20
Interfaces	20
Required Utilities	20
Functional Requirements	20
Survivability Requirements	20

	KLM Technology	OFF SHORE	Page 2 of 92
	Group	TECHNICAL SAFETY	Rev: 01
	Project Engineering Standard	(PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
C	CONTAINMENT		21
	Role		21
	Interfaces		21
	Required Utilities		21
	Functional Requir	ements	21
	Survivability Requ	uirements	22
C	OPEN DRAIN		22
	Role		22
	Interfaces		22
	Required Utilities		22
	Functional Requir	ements	22
	Survivability Requ	uirements	23
F	PROCESS SAFETY		23
	Role		23
	Interfaces		23
	Required Utilities		23
	Functional Requir		23
	Survivability Requ		25
E	EMERGENCY SHUT DO	OWN (ESD	25
	Role		25
	Interfaces		25
	Required Utilities		25
	Functional Requir		25
	Survivability Requ		30
E		D FLARE/VENT SYSTEM	30
	Role		30
	Interfaces		30
	Required Utilities		31
	Functional Requir		31
	Survivability Requ	lirements	33

KLM Technology	OFF SHORE	Page 3 of 92
Group	TECHNICAL SAFETY	Rev: 01
Project Engineering Standard	(PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
GAS DETECTION		33
Role		33
Interfaces		33
Required Utilities		33
Functional Requir	ements	34
Survivability Requ	uirements	42
FIRE DETECTION		42
Role		42
Interfaces		42
Required Utilities		42
Functional Requir	ements	42
Survivability Requ	uirements	50
IGNITION SOURCE CO	NTROL (ISC)	51
Role		51
Interfaces		51
Required Utilities		51
Functional Requir		51
Survivability Requ		55
HUMAN – MACHINE IN	TERFACE (HMI)	55
Role		55
Interfaces		55
Functional Requir		56
Survivability Requ		57
	ON AND HEATING, VENTILATION AND AI	
CONDITIONING (HVAC)	58
Role		58
Interfaces		58
Required Utilities	emente	58
Functional Requir		58
Survivability Requ	lirements	61

	KLM Technology	OFF SHORE	Page 4 of 92
	Group	TECHNICAL SAFETY	Rev: 01
Pr	oject Engineering Standard	(PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
PU	BLIC ADDRESS (PA	A), ALARM AND EMERGENCY COMMUNIC	CATION 61
	Role		61
	Interfaces		61
	Required Utilities		61
	Functional Requir	rements	62
	Survivability Requ	uirements	64
ΕN	IERGENCY POWER	AND LIGHTING	64
	Role		64
	Interfaces		64
	Required Utilities		64
	Functional Requir	rements	64
	Survivability Requ		67
PA	SSIVE FIRE PROTE	CTION (PFP)	67
	Role		67
	Interfaces		67
	Required Utilities		67
	Functional Requir		67
	Survivability Requ		70
FIF	RE FIGHTING SYSTE	EMS	70
	Role		70
	Interfaces		71
	Required Utilities	remente	71 71
	Functional Requir Survivability Requ		80
FG			81
LU	Role		81
	Interfaces		81
	Required Utilities		81
	Functional Requir	rements	81
	Survivability Requ		85
	· ····································		

KLM Technology	OFF SHORE TECHNICAL SAFETY	Page 5 of 92
Group	TECHNICAL SAFETT	Rev: 01
Project Engineering Standard	(PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
RESCUE AND SAFETY	EQUIPMENT	85
Role		85
Interfaces		86
Required Utilities		86
Functional require	ements	86
Survivability Requirements		88
MARINE SYSTEMS AN	D POSITION KEEPING	88
Role		88
Interfaces		89
Required Utilities		89
Functional Requir	rements	89
Survivability Requirements		90
SHIP COLLISION BAR	RIER	90
Role		90
Required Utilities		90
Functional Requir	rements	90
Survivability Requ	uirements	91
APPENDIX A		92

OFF SHORE TECHNICAL SAFETY

Page 6 of 92

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

Rev: 01

SCOPE

This Project Standard and Specification as far as possible, intended to replace oil company specifications and serve as references in the authorities' regulations. This Project Standard and Specification, together with ISO 13702, defines the required standard for implementation of technologies and emergency preparedness to establish and maintain an adequate level of safety for personnel, environment and material assets.

REFERENCES

Throughout this Standard the following dated and undated standards/codes are referred to. These referenced documents shall, to the extent specified herein, form a part of this standard. For dated references, the edition cited applies. The applicability of changes in dated references that occur after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated references, the latest edition of the referenced documents (including any supplements and amendments) applies.

1.	API RP 14C	Recommended Practice for Analysis, Design, Installation, and Testing of Basic Surface Safety Systems for Offshore Production Platforms
2.	API RP 521	Guide for Pressure-Relieving and Depressurizing Systems
3.	EN 1838	Lighting applications – Emergency lighting
4.	EN 13463 - (all parts)	Non-electrical equipment intended for use in potentially explosive atmospheres
5.	IMO Res.A.653	Flame spread, surface materials and floorings
6.	ISO 5660 - (all parts)	Reaction-to-fire tests – Heat release, smoke production and mass loss rate
7.	ISO 10418	Petroleum and natural gas industries – Offshore production installations – Basic surface process safety systems
8.	ISO 13702	Petroleum and natural gas industries – Control and mitigation of fires and explosions on offshore production installations – Requirements and guidelines
9.	IEC/TR 60079-13	Electrical apparatus for explosive gas atmospheres – Part 13: Construction and use of rooms or buildings protected by pressurization

KLM Technology Group	OFF SHORE TECHNICAL SAFETY	Page 7 of 92 Rev: 01
Project Engineering Standard	(PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
10. IEC 60331- (all parts)	Tests for electric cables under fire condit integrity	tions – Circuit
11.IEC 60332- (all parts)	Tests on electric and optical fibre cabl conditions	es under fire
12.IEC 61508 - (all parts)	Functional safety of electrical / programmable electronic safety related s	electronic / ystems
13. IEC 61511- (all parts)	Functional safety – Safety instrumented the process industry sector	d systems for
14.IEC 61892-7	Mobile and fixed offshore units installations –	 Electrical
15.IP 15	Area Classification code for installation flammable fluids	ons handling
16.ISO 23251	Petroleum, petrochemical and natural ga Pressure-relieving and depressurizing sy	
17.NFPA 20	Standard for the Installation of Stationar for Fire Protection Spray Systems	y Fire Pumps
18.ISO 17776	Petroleum and natural gas industries production installations – Guidelines of techniques for hazard identification assessment	on tools and
19.NFPA 13	Installation of Sprinkler Systems	
20.NFPA 14	Standard for the Installation of Standpi Systems	pe and Hose
21.NFPA 15	Standard for Water Spray Fixed Syst Protection	ems for Fire
22.NFPA 16	Standard for the Installation of Foam-W and Foam-Water Spray Systems	ater Sprinkler
23. NFPA 750	Standard on Water Mist Fire Protection S	Systems

DEFINITIONS AND TERMINOLOGY

Area classification - division of an installation into hazardous areas and non-hazardous areas and the sub-division of hazardous zones

Dimensioning accidental load (DAL) - most severe accidental load that the function or system shall be able to withstand during a required period of time, in order to meet the defined risk acceptance criteria

OFF SHORE TECHNICAL SAFETY

Page 8 of 92

Rev: 01

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

Emergency lighting - lighting which will ensure adequate light conditions on the installation in the event of failure of the main power supply

Explosion load - time dependent pressure or drag forces generated by violent combustion of a flammable atmosphere

Fire area - area separated from other areas either by physical barriers (fire/blast partition) or distance which will prevent dimensioning fire to spread

Fire detection area - area, or areas, of similar environmental conditions and hazards, and with similar detection and protection arrangements defined for the purpose of grouping areas or rooms into similar F&G logic

Fire load - heat load from a fire for a specified time period

Firewater (FW) pump system - total system, which supplies water for fire fighting system, i.e. water inlets with filters, FW pumps, risers, power sources, power transmissions, fuel pipes/tanks and control systems

Hazardous area - three-dimensional space in which a flammable atmosphere may be expected to be present at such frequencies as to require special precautions for the control of potential ignition sources

Ignition source groups:

- non-essential equipment, Group 1, is equipment not affecting production availability or safety integrity

<u>Note</u> Non-essential equipment may include equipment such as non-Ex lighting, heat tracing, welding socket outlets, electrical outlets for hand tools, air operated tools and other hot work activities.

- essential equipment, Group 2, is equipment that shall be kept alive to maintain production or drilling operations

<u>Note</u> Affected equipment may include main power generator, main electrical distribution panels, all electrical consumers not required during ESD1, diesel engines, heaters, boilers, ventilation systems unless defined as a safety critical item.

- safety critical equipment, Group 3, is equipment that shall be in operation to ensure escape, evacuation and/or to prevent escalation

Intermittently manned - work area or work place where inspection, maintenance or other work is planned to last at least 2 hr, but less than 8 h a day for at least 50 % of the installation's operation time

OFF SHORE TECHNICAL SAFETY

Page 9 of 92

Rev: 01

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

Muster area - area where mustering shall take place in the event of general and/or evacuation alarm

Non-hazardous area - area in which an explosive gas atmosphere is not expected to be present in quantities such as to require special precautions for the construction, installation and use of electrical apparatus and equipment in "normal operation"

<u>Note</u> Normal operation is a situation when the plant is operating within its design parameters. Minor releases of flammable material may be part of normal operation. For example, releases from seals that rely on wetting by the fluid being pumped are considered to be minor releases. Failures (such as breakdown of pump seals, flange gaskets or spillage caused by accidents) that involve repair or shut down are not considered to be part of normal operation, and may require special precautions of potential ignition sources.

Normally not manned - work area or work place that is not permanently or intermittently manned

Safety function - physical measures which reduce the probability of a situation of hazard and accident occurring, or which limit the consequences of an accident

Temporary refuge - place provided where personnel can take refuge for a predetermined period whilst investigations, emergency response and evacuation pre-planning are undertaken

SYMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION	DESCRIPTION
AC/h	air changes per hour
AFP	active fire protection
API	American Petroleum Institute
APS	abandon platform shut down
BD	blow down
BOP	blow out preventer
C&E	cause and effect
CAP	critical action panel
CCR	central control room
DAL	dimensioning accidental load

KLM Technology	OFF SHORE	Page 10 of 92
Group	TECHNICAL SAFETY	Rev: 01
Project Engineering Standard	(PROJECT STANDARDS AND SPECIFICATIONS)	April 2011
DHSV DIFFS EERS EN ESD F&G FES FPDS FPSO FW GA HC HMI HVAC IEC IMO IP ISC ISO IR LAHH LEL LELm LER LIR LQ MOB MODU NA NFPA NNMI PA PFP PSD PSV SAS SOLAS SSIV UHF VDU VHF	down hole safety valve deck integrated fire fighting system evacuation, escape and rescue strateg European Standard emergency shut down fire and gas fire and explosion strategy fire protection data sheet floating production, storage and offload firewater general alarm hydro carbon human-machine interface heating, ventilation and air conditioning International Electrotechnical Commiss International Maritime Organisation Institute of Petroleum ignition source control International Organization for Standard infrared level alarm high high (trip level) lower explosion limit lower explosion limit lower explosion limit mobile offshore drilling unit not applicable National Fire Protection Association normally not manned installations public address passive fire protection process shut down pressure safety valve safety and automation system International Convention for the Safety Sea subsea isolation valve ultra high frequency	ding Sion dization

OFF SHORE TECHNICAL SAFETY

Page 11 of 92

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

Rev: 01

UPS

uninterruptible power supply

MANAGEMENT OF TECHNICAL SAFETY

General

Technical safety management in project development and design processes comprises activities to identify risks, develop safety strategies and performance requirements for safety systems and barriers. Technical safety management shall also facilitate the design process to ensure that studies, analysis and reviews are performed in due time and properly documented with due consideration of the needs for timely input to design and procurement processes.

For modification projects (e.g. upgrading of existing installation/module, tie-in of satellite field), technical safety management activities adjusted to project scope and complexity shall be performed, including new analyses or updating of existing analyses for factors that are considered to be affected by the modification.

A follow-up system shall be established that enables proper documentation, handling, follow-up and closeout of agreed actions and recommendations from the various studies and analyses in the project.

The individual project or installation shall perform specific hazard identification and risk evaluation process, and supplement the requirements as necessary to manage the actual risk picture.

A flow diagram describing some of the main activities related to technical safety design is shown in Figure 1.

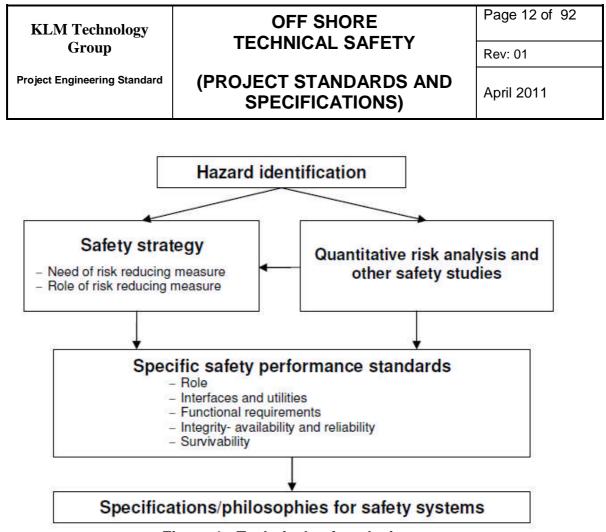


Figure 1 - Technical safety design

Risk Reduction Principles – Inherent Safety Design

In concept optimization and design development, priority shall always be given to use of preventive measures/exposure barriers and inherently safer design principles. The objectives with risk reduction principles and inherent safety design are to:

- reduce potential hazards,
- reduce probability of unwanted events,
- reduce inventory and damage potential,
- strive for simplicity and reliability,
- prevent escalation, e.g. by safety barriers.

Safety Performance Standards

Safety performance standard shall be the verifiable standard to which safety system elements are to perform. The objective of the specific safety performance standards is to add any supplemental safety requirements other than those specified by authority requirements and standards.

OFF SHORE TECHNICAL SAFETY

Page 13 of 92

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

Rev: 01

The performance standards shall be based on the safety strategy document(s) and these should be read in conjunction with each other.

The specific safety performance standards shall ensure that barriers, safety systems or safety functions

- are suitable and fully effective for the type hazards identified,
- have sufficient capacity for the duration of the hazard or the required time to provide evacuation of the installation,
- have sufficient availability to match the frequency of the initiating event,
- have adequate response time to fulfil its role,
- are suitable for all operating conditions.

Qualification of Technology

New technology is defined as systems or components for which an acceptable reliability is not demonstrated by a documented track record for the particular application. New technology shall be qualified following a systematic approach, in order to demonstrate that it meets specified functional requirements and reliability targets.

Experience Transfer

To ensure transfer of technical safety experience from relevant installations in operation, an experience transfer activity prior to start of detail engineering should be carried out. Sources of experience should include:

- operational experience of relevant installations,
- project execution of relevant installations and modification to these,
- good technical solutions,
- solutions/equipment to be avoided.

Integrity – Availability and Reliability

The minimum requirements to availability and reliability for safety functions/systems shall be determined based on IEC 61508 or IEC 61511 or other specific safety analysis/risk assessments as relevant for the safety function in question.

All relevant safety function/systems shall be subject to testing at regular intervals. Test intervals should be determined based on relevant standards, criticality analysis and experience.

The design of safety functions/systems shall, where practical, allow for required testing to be carried out without interrupting production or operations.

The applicable safety system or affected parts of it shall go to a predefined safe state in the event of detectable malfunction.

OFF SHORE TECHNICAL SAFETY

Page 14 of 92

Rev: 01

Project Engineering Standard

(PROJECT STANDARDS AND SPECIFICATIONS)

April 2011

If not fail-safe, the same level of safety shall be achieved by redundancy, diagnostics and alarm to control room. Single faults/errors should not prohibit actions on demand.

Dimensioning Accidental Load (DAL)

DALs shall be established based on quantitative risk analysis and the comparison of estimated risk with risk acceptance and/or design criteria. Dimensioning loads shall be revised upon modifications, e.g. layout, equipment density and natural ventilation conditions.

Dimensioning load shall not cause loss of safety functions or escalation (locally). The following principles shall apply:

- dimensioning explosion loads shall be established using a recognised method and a representative geometric explosion model. The loads shall be defined for relevant local horizontal and vertical area dividers (pressure and impulse from explosion) and equipment (pressure/drag forces);
- explosion loads shall also be defined for areas external to the initial explosion location (typical LQ, utility modules etc.);
- fire loads, (e.g. heat loads). Unless specific fire analysis is performed, Table 1 applies;
- ship collisions (e.g. impact loads to be absorbed by installation structure);
- falling loads and dropped objects (e.g. impact loads to be absorbed by installation structure).

	Jet fire		Pool fire
	For leak rates m > 2 kg/s kW/m ²	For leak rates 0,1 kg/s < m < 2 kg/s kW/m ²	kW/m²
Local peak heat load	350	250	150
Global average heat load	100	0	100

 Table 1 - Heat flux values

The effect of area deluge is not accounted for in Table 1. The effect of deluge may be taken into account for process piping/equipment (not for main structural elements and fire partitions) provided proper documentation is available on the effect of deluge as well as on the reliability of the FW supply system.

The global average heat load represents the average heat load that expose a significant part of the process segment or structure. The global average heat load provides the major part of the heat input to the process segment and, hence, affects the pressure in the segment.

The local peak heat load exposes a small (local) area of the process segment or of the structure to the peak heat flux. The local peak heat load, with the highest heat flux, determines the rupture temperature of different equipment and piping