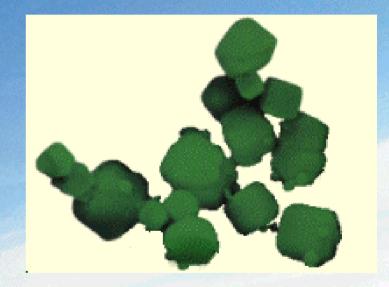


Molecular Sieve Applications

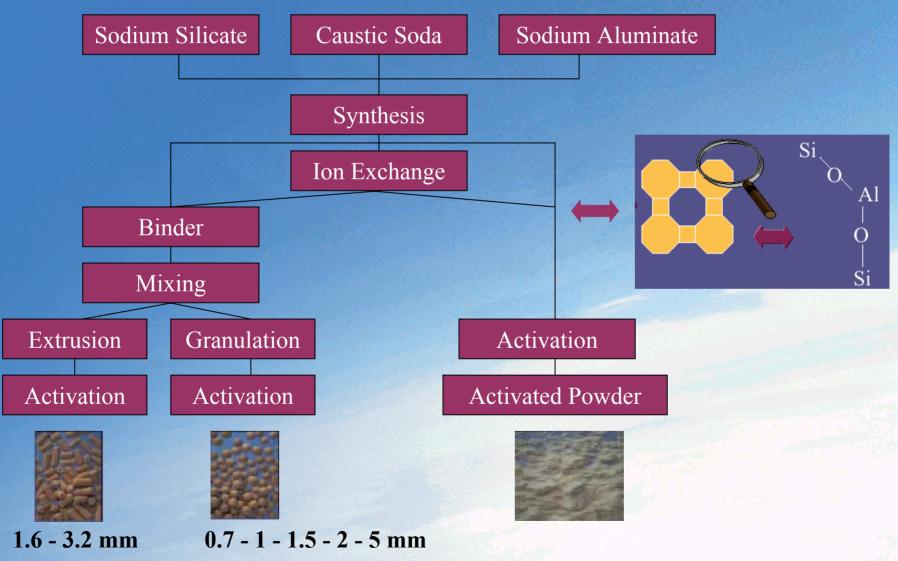
PRESENTER: CHARLES D. NOLIDIN


Cheah Phaik Sim Loo Yook Si Karl Kolmetz,

Outlines

- Introduction Molecular Sieve Adsorbents
- Adsorption Principles
- "Dynamic" Adsorption
- Regeneration Methods
- Applications in Titan
- Molecular Sieve Life and Contaminants
- Thermal Effects (Safety Aspects)
- Services Provided
- Conclusion

Introduction - Molecular Sieve Adsorbents


- Crystalline alumino silicate or synthetic zeolites
- Unique structure with regular pore size

Introduction - Molecular Sieve Adsorbents

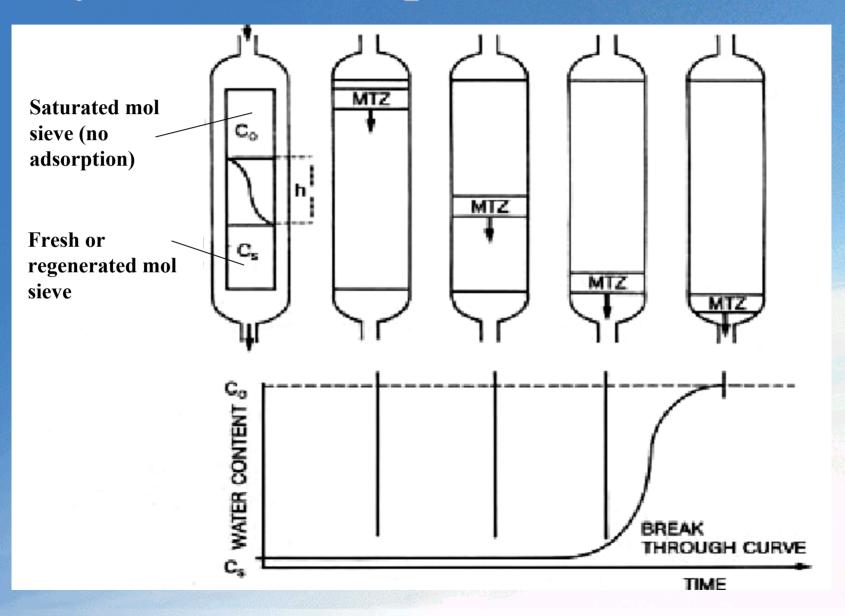
- Strong adsorptive force to remove many gas or liquid impurities to very low levels (ppm or less)
- Differ from other adsorbents in the form of their isotherms which have a high adsorption capacity for relatively low concentrations of the adsorbate

Synthesis and Preparation of Molecular Sieves

Adsorption Principles

- A phenomenon of a surface on which a molecule contained in a fluid is fixed on a surface of a solid
- Adsorption of the impurities having lower and/or same size as the pores of the molecular sieve.

Adsorption Principles


- When several impurities having the same size have to be removed, the more polar of them is first adsorbed.
- Physisorption of the impurities (Van der Waals interaction) on the molecular sieve following a extended Langmuir equation.

 The most common mode of adsorptive separation process employs a fixed bed, cyclic operation.

 Mass Transfer Zone (MTZ) is defined as the bed length (h) through which the concentration of the adsorbate is reduced from initial C₀ to desired C_S

- Water vapor is adsorbed in a finite length of bed (MTZ) as wet process stream enters fresh molecular sieve bed
- As wet gas continues to flow, the bed may be divided into 3 zones, saturated (equilibrium) zone, MTZ and active (fresh or regenerated) zone

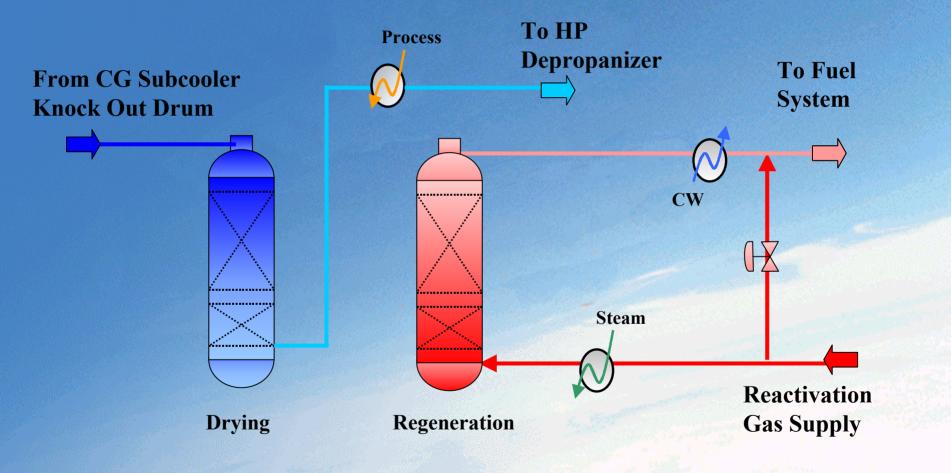
- When the MTZ reaches the outlet end of the bed, the bed is exhausted and regeneration is required
- The water content is shown to increase in the breakthrough curve as the MTZ moves towards the outlet

Regeneration Methods

- The saturated mol sieve recovers its adsorption capacity after desorption this is regeneration
- Four methods available commercially:
- * Thermal swing heating the bed to a temperature at which the adsorptive capacity is reduced to a low level
- * Pressure swing reducing adsorptive capacity by lowering pressure at constant temperature

Regeneration Methods

- * Inert purge stripping passing a fluid containing no adsorbable molecules and in which the adsorbate is soluble without changing temperature or pressure
- Displacement desorption passing a fluid containing a high concentration of an adsorbable molecule without changing temperature or pressure


Applications in Titan

• The necessity of water removal is to prevent any hydrates in subsequent low temperature equipment.

Discussion of molecular sieves application in Titan will be limited to the following:-

- Cracked Gas Dryers
- Liquid Dryers
- Hydrogen Dryers

Cracked Gas Dryers Process Flow Diagram

Cracked Gas Dryers

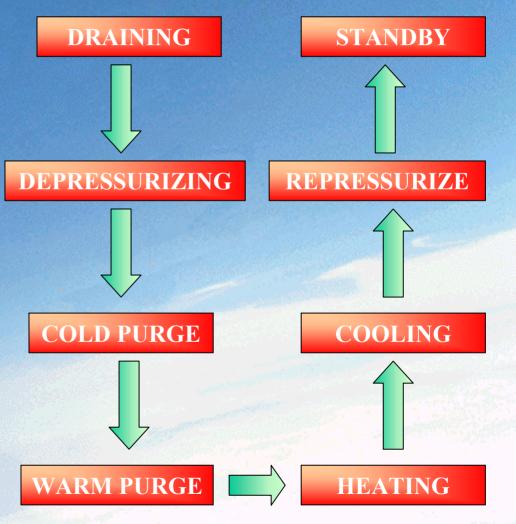
Operating Conditions (Adsorption Step)

Cracker 1

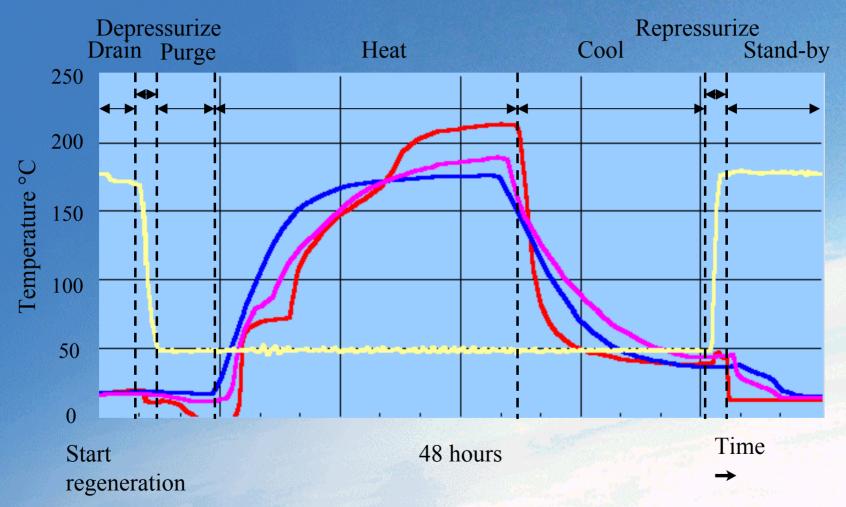
- One vessel on drying mode and one vessel on regeneration or standby mode
- Presently, the dryer vessels are loaded with mol sieves from two different vendors
- Fixed adsorption cycles of 60 to 70 hours

Cracked Gas Dryers Operating Conditions (Adsorption Step)

- Design operating conditions are:
- * Temperature ~ 10.5°C
- * Pressure ~ $15 \text{ kg/cm}^2\text{g}$
- * Flow rate ~ 76 ton/h
- * Water content ~ 886 ppmv

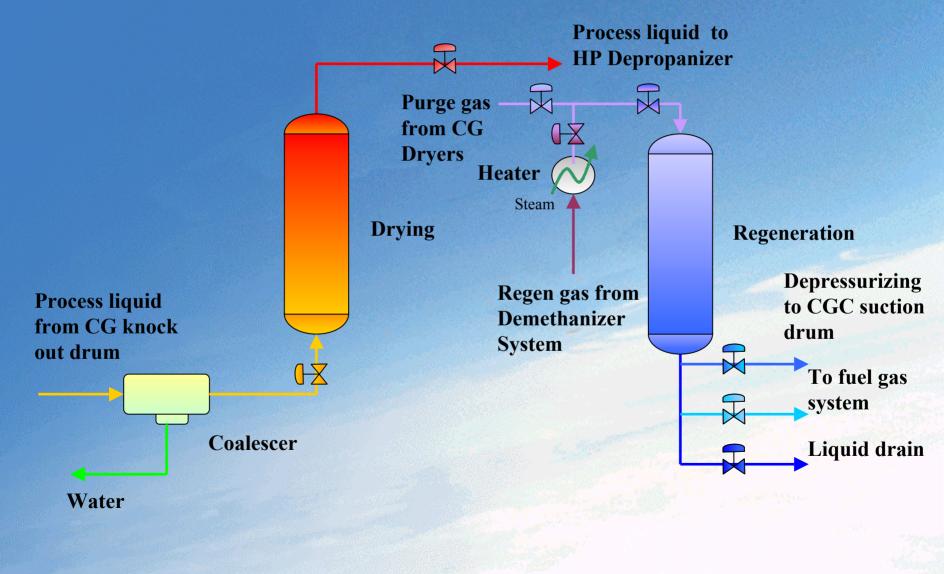

Cracked Gas Dryers Comparison of Breakthrough Test

Parameter	Vessel A Mol Sieve X	Vessel S Mol Sieve Y
Mol sieve type	1/8" and 1/16" 3 Å	1/8" and 1/16" 3 Å
Date of b'thru test	Mol sieve life of 4 months	Mol sieve life of 7 months
Feed rate	59.6 ton/h	58 ton/h
Water content	787 ppmv	900 ppmv
Adsorption time	83.5 hours	76 hours
Adsorption capacity	13.78 gH ₂ O/100g mol sieve	13.92 gH ₂ O/100g mol sieve
Mol sieve life	42 months to date	18 months to date


Cracked Gas Dryers

• Operating Conditions (Regeneration Step)

- Regeneration period of 48 hours
- Design regeneration conditions are:
- Depressurised to 4 kg/cm²g
- * Heat to bed temperature of 200°C
- * Regen gas flow rate is6 tons/h



Cracked Gas Dryers Typical Regeneration Curve (Mol Sieve Y)

Mol Sieve X has similar regeneration curve

Liquid Dryers Process Flow Diagram

Liquid Dryers

• Operating Conditions (Adsorption Step)

Cracker 1

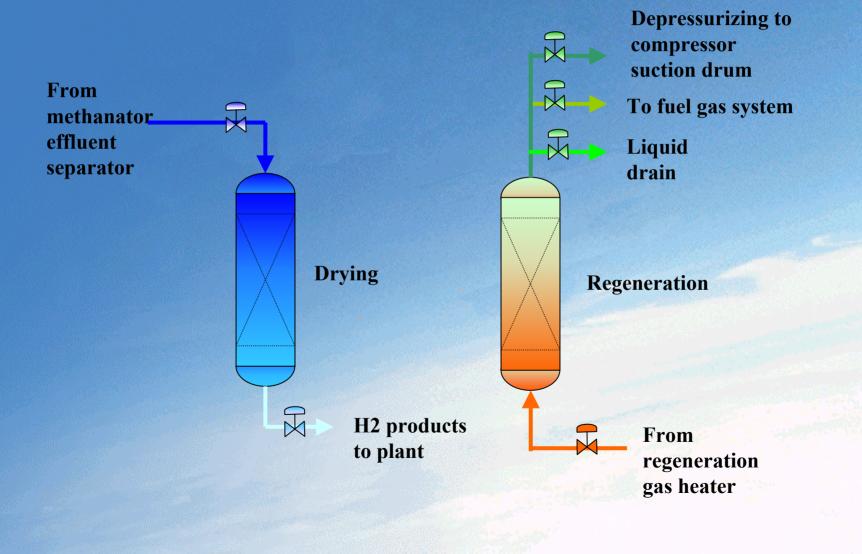
- One vessel on drying mode and one vessel on regeneration mode
- Fully automatic operations by PLC
- Fixed adsorption cycles of 24 hour
- Have used mol sieves from two different vendors

Liquid Dryers Operating Conditions (Adsorption Step)

- Design operating conditions are:
- * Temperature ~ 10.5°C
- * Pressure ~ $18.6 \text{ kg/cm}^2\text{g}$
- * Flow rate ~ 7736 kg/h
- * Water content ~ 420 ppmw

Liquid Dryers Comparison of Breakthrough Test

Parameter	Mol Sieve X	Mol Sieve Y
Mol sieve type	1/16" 3 Å	1/16" 3 Å
Date of b'thru test	Mol sieve life of 7 months	Mol sieve life of 15 months
Flow rate	9300 kg/h	12500 kg/h
Water content	420 ppmw	420 ppmw
Adsorption time	36 hours	25 hours
Adsorption capacity	15.62 gH ₂ O/100g mol sieve	14.58 gH ₂ O/100g mol sieve
Mol sieve life	35 months	24 months *


* Short run life due to different regeneration conditions

Liquid Dryers

• Operating Conditions (Regeneration Step)

Regeneration period SWITCHOVER **STANDBY** • is 24 hours • The typical operating conditions are: DRAINING **FILLING** * Depressurised to 4 kg/cm²g Heat to bed PURGING * DEPRESSURIZING temperature of 200°C Regen gas flow rate is 135 kg/h COOLING HEATING

Hydrogen Dryers Process Flow Diagram

Hydrogen DryersOperating Conditions (Adsorption Step)

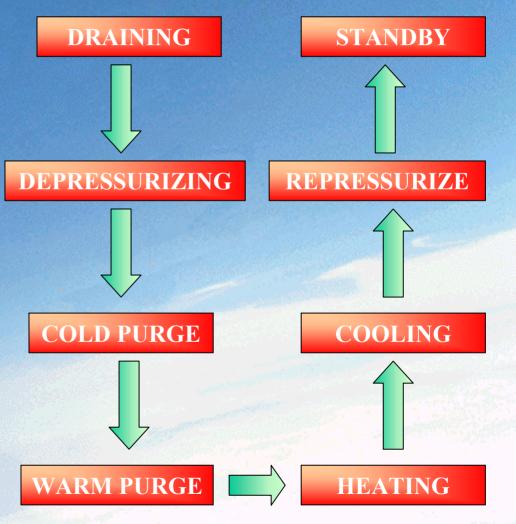
Cracker 2

- One vessel on drying mode and one vessel on regeneration or standby mode
- Only used mol sieves from one vendor
- Fixed adsorption cycles of 48 hours

Hydrogen Dryers

• Operating Conditions (Adsorption Step)

- Design operating conditions are:
- * Temperature $\sim 12^{\circ}C$
- * Pressure ~ $30 \text{ kg/cm}^2\text{g}$
- * Flow rate ~ 1226 kg/h
- * Water content ~ 475 ppmv


Hydrogen DryersPerformance

Parameter	Vessel A/S	
Mol sieve type	1/8" 3 Å	
Flow rate	1300 kg/h	
Water content	475 ppmv	
Adsorption time	48 hours	
Adsorption capacity	7.59 gH ₂ O/100g mol sieve	
Mol sieve life	31 months to date	

Hydrogen Dryers

Operating Conditions (Regeneration Step)

- Regeneration period of 48 hours
- Design regeneration conditions are:
- Depressurised to 4 kg/cm²g
- * Heat to bed temperature of 200°C
- * Regen gas flow rate is 600 kg/h

Services Provided

Comparison is made on the two vendors for the services rendered to Titan

- Both vendors are technically well versed
- Both vendors are experienced and well known
- Both vendors are willing to conduct breakthrough test but requires planning in advance

Services Provided

- One vendor has regional technical support that can conduct the testing while the other technical support team is based in Europe
- One vendor is able to predict the mol sieve end of run using a model

Molecular Sieve Life

Degradation of mol sieve is shown by:-

- shortfall in capacity
- pressure drop increase across the bed

- The aging of mol sieve leads to more frequent regeneration than forecast
- The rate of aging depends on type of service, design and feed characteristics

Contamination of Molecular Sieve

Premature bed aging can be caused by contaminants such as:-

- Oil
- Olefins, diolefins
- Free water or "excess" water

Contamination of Molecular Sieve

- During normal regeneration in the presence of heat, some of the hydrocarbon contaminants decompose and polymerize forming a deposit of coke on the sieve surface
- This blocks the actual adsorption sites and impedes diffusion within the macro pores

Contamination of Molecular Sieve

- Free water attacks the interface between the active zeolite material and clay binders leading to a separation of the two constituents
- This will lead to formation of powders and eventual caking of mol sieve beds

Thermal Effects (Safety Aspects)

Temperature rise from heat of adsorption can be caused by:-

- addition of moisture (water) without flooding the bed e.g. during bed loading when vessels are not completely dry
- sudden contact with high concentrations of hydrocarbons having high heats of adsorption such as olefins e.g during start ups

Conclusion

- Molecular sieves used in each application has been satisfactory
- Mol sieves life for cracked gas dryer and hydrogen dryer are expected to last up to 4 years
- Mol sieves life for liquid dryer was shown to last 2 to 3 years

Conclusion

- Have used molecular sieves from two different vendors
- Vendors are technically competent and services are satisfactory

Thank You

