ENGINEERING PRACTICE

WWW.IACPE.COM

VOLUME 2 NUMBER 1

SPECIAL FEATURE Design Guidelines for Safety in Piping Networks

PRACTICING ENGINEERS

JANUARY 2016

ENGINEERING PRACTICE

VOLUME 2 NUMBER 1 JANUARY 2016

ACADEMIC BOARD Dr. Dominic Foo Dr. Sivakumar Kumaresan Dr. Muaffaq A Yani

INDUSTRY BOARD

Helmilus Moesa Supriyanto Timothy M. Zygula Lee Pheng

LEADERSHIP BOARD Karl Kolmetz William B. Lotz Lin L. Choo

ERNATIONAL ASSO

CERTIFIED PRACTICING ENGINEERS

ABOUT

International Association of Certified Practicing Engineers provides a standard of professional competence and ethics. Identifies and recognizes those individuals that have meet the standard. And requires our members to participate in continuing education programs for personal and professional development.

In additional to insuring a professional level of competency and ethics the IACPE focuses on three major areas of development for our members: Personal, Professional, and Networking.

HISTORY

The International Association of Certified Practicing Engineers concept was formulated by the many young professionals and students we meet during our careers working in the field, running training courses, and lecturing at universities.

During question and answer sessions we found the single most common question was: What else can I do to further my career?

We found, depending on the persons avail able time and finances, and very often dependent on the country in which the person was from, the options to further ones career were not equal.

Many times we found the options available to our students in developing countries were too costly and or provided too little of value in an expanding global business environment.

The reality is that most of our founders come from countries that require rigorous academic standards at four year universities in order to achieve an engineering degree. Then, after obtaining this degree, they complete even stricter government and state examinations to obtain their professional licenses in order to join professional organizations. They have been afforded the opportunity to continue their personal and professional development with many affordable schools, programs, and professional organizations. The IACPE did not see those same opportunities for everyone in every country.

So we set out to design and build an association dedicated to supporting those engineers in developing in emerging economies.

The IACPE took input from industry leaders, academic professors, and students from Indonesia, Malaysia, and the Philippines. The goal was to build an organization that would validate a candidates engineering fundamentals, prove their individuals skills, and enhance their networking ability. We wanted to do this in a way that was cost effective, time conscience, and utilized the latest technologies.

MISSION

Based on engineering first principles and practical real world applications our curriculum has been vetted by academic and industry professionals. Through rigorous study and examination, candidates are able to prove their knowledge and experience. This body of certified professionals engineers will become a network of industry professionals leading continuous improvement and education with improved ethics.

VISION

To become a globally recognized association for certification of professional engineers.

WWW.IACPE.COM | INFO@IACPE.COM

KNOWLEDGE. CERTIFICATION. NETWORKING

LETTER FROM THE PRESIDENT

KARL KOLMETZ

New Year, New You

Welcome to 2016 and new goals for the New Year. Or you may call these goals, New Year's Resolutions. Most people's resolutions revolve around making improvements in health, family life, finances and/or career.

The common thread among these resolutions is making good choices. Many people learn how to make good choices through past bad choices (trial and error). No one can go back to make a brand new start, but anyone can choose to move forward from today and begin to construct a new future through good choices.

IACPE can help you focus on your career related resolutions, which in turn will positively impact your health, family life and finances going forward. I know a great way to move your career forward to a better and brighter future is joining IACPE. The three key components of an IACPE education are Knowledge, Certification and Networking. Each of these components will give you a well-rounded and structured advanced education that will ultimately boost your career goals into the next desired phase.

If you or someone you know is entering a STEM college, researching or applying to colleges, I ask that you consider attending a college that has partnered with IACPE. The practical design knowledge that IACPE imparts will greatly assist in your education and career.

All the Best in Career and Life, Karl Kolmetz

PAGE 2

BECOME A CERTIFIED ENGINEER

INTERNATIONAL ASSOCIATION OF CERTIFIED PRACTICING ENGINEERS www.iacpe.com

IACPE supports engineers developing across emerging economies focusing on graduates connecting with industrial experts who can help further careers, attaining abilities recognized across the industry, and aligning knowledge to industry competency standards.

IACPE offers certification in the following engineering fields: Mechanical, Metallurgy, Chemical, Electrical, Civil, Industrial, Environmental, Mining, Architectural, Bio, Information, Machine and Transportation.

WWW.IACPE.COM

NEWS

INTRODUCTION TO REFINING by William B. Lotz

In November and December 2015 IACPE's "Introduction to Refining" seminar conduct by IACPE Vice President Mr. William B. Lotz was a resounding success given the feedback from students.

"Introduction to Refining" was held in November at Universitas 17 Agustus 1945 Semarang, Universitas 17 Agustus 1945 Surabaya, University Sanata Dharma Yogyakarta and Sekolah Tinggi Teknologi Fatahillah Cilegon. Before the seminar held in Surabaya, IACPE met with the East Java Association of Engineering and Consulting in hopes of forming a long-term relationship.

CAREER GUIDELINES by Karl Kolmetz

IACPE President Mr. Karl Kolmetz presented a "Career Guidelines" seminar at two universities. If you are applying to a university, you should strongly consider those universities that have partnered with IACPE to help build your practical knowledge during your studies and certification for your professional practice.

"Career Guidelines" was held at University Islam Kadiri, Kediri in November and Institute Technology Indonesia in December.

IACPE is also honoured that an engineering design company has chosen to train their engineering staff through IACPE. Give your employees the training they need for their engineering career and professional life with IACPE.

INDUSTRY NEWS

India Approves HPCL's Visakh Refinery Expansion

State-run Hindustan Petroleum Corp. Ltd. (HPCL) received environmental clearance from Indian officials to expand its Visakhapatnam refinery in Andhra Pradesh from 8.33 MMtpy to 15.0 MMtpy, reports said this week.

India's Expert Appraisal Committee (EAC), under the Ministry of Environment and Forests, approved the 18,400-crore expansion plan which was earlier rejected in 2013, citing a moratorium on industrial expansion in some of parts of Visakhapatnam.

"The Committee deliberated upon the issues raised during the public hearing/public consultation meeting conducted by the AP Pollution Control Board on June 26, 2015," the EAC said in the minutes of the meeting.

"The issues were raised regarding CSR, accident in plant premises, impact on environment in terms of traffic pollution, wages for contract workers, local employment and water supply facilities.

Shell Contracts Wood Group for Prelude FLNG Work in Australia Wood Group has secured a three-year contract with Shell Australia's Prelude floating liquefied natural

gas (FLNG) project, officials confirmed on Wednesday. Perth-based Wood Group Kenny will provide specialist consultancy services for flexible riser integrity management prior to and during operation of Prelude FLNG, which will be located 475 kilometers north-

north east of Broome in Western Australia.

The focus of the contract will be the development and implementation of the flexible riser integrity management plan, as well as inspection, monitoring, testing and on call engineering support. This contract, effective immediately, follows Wood Group Kenny's successful design of Prelude's subsea flowlines.

Honeywell to Automate, Supply Vietnam's PV Gas with Modular LPG Plant Honeywell announced this week that it will supply a 250 million standard cubic feet/day (mmscfd) modular gas processing plant and advanced automation systems to PetroVietnam subsidiary, PV Gas. PV Gas, Vietnam's primary gas provider, will use Honeywell UOP's modular gas processing plant to separate liquefied petroleum gas (LPG) from natural gas at its Ca Mau facility near the southern tip of Vietnam.

GAS Honeywell Process Solutions (HPS) will serve as the integrated main automation contractor (I-MAC) and supply the integrated controls and safety systems for the facility and terminal. PV Gas's total capital investment for the project is approximately \$498 million.

PV Gas supplies natural gas to generate nearly 40% of the nation's electricity, and local production accounts for more than 55% of Vietnam's domestic demand for LPG.

CB&I Announces Polypropylene Technology Award in China

CB&I today announced it has been awarded a contract by Hebei Haiwei Group for the license and basic

engineering design of a polypropylene unit to be built in Jingxian, Hebei Province, China. The unit will use CB&I's Novolen® technology to produce 200,000 metric tons per annum of polypropylene. CB&I previously announced the license and engineering design of a propane dehydrogenation unit, which uses CB&I's CATOFIN® technology, at the

same location.

"CB&I is pleased to have been selected as the polypropylene licensor for the project," said Daniel McCarthy, President of CB&I's Technology operating group. "This award builds on our relationship with Hebei Haiwei as it follows the successful development of the CATOFIN propane dehydrogenation unit."

DESIGN GUIDELINES FOR SAFETY IN PIPING NETWORKS

By: Karl Kolmetz, KLM Technology Group Stephen J.Wallace, Wallace Consulting Services Mee Shee Tiong, KLM Technology Group 1312 TAITAT A

Introduction

processing plant, the piping network is designed to the ing systems. most stringent standards. Mechanical Engineering codes require a 400% safety factor in the design of these sys- This paper will discuss various case studies that will of equipment failures (1).

Since these systems are responsible for many catastrophic accidents, operations, design, and maintenance personnel should understand the potential safety concerns. The best tool that we have to prevent future

accidents is to review past incidents and incorporate When compared to other equipment in a hydrocarbon lessons learned into future design and operation of pip-

tems. The piping system is normally considered the help to illustrate the consequences of inappropriate safest part of the plant. However, even with this level design, operation, and maintenance of piping systems. of safety, reviews of catastrophic accidents show that The case studies include 1) Check valve failures; 2) piping system failures represent that largest percentage Small bore piping in compressor discharge piping, 3) Low temperature embitterment, and 4) Hot tapping safety issues and hot tap shavings concerns.

SPECIALIZED TECHNICAL ARTICLES AND BOOKS

DETAILED ENGINEERING DESIGN GUIDELINES

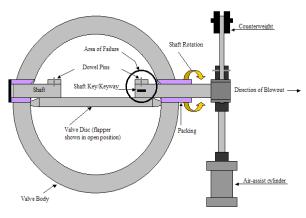
> PROJECT ENGINEERING STANDARDS AND SPECIFICATIONS

> TYPICAL PROCESS UNIT OPERATING MANUALS

> > **TRAINING VIDEOS**

KLM Technology Group is a technical consultancy group, providing specialized services and training to improve process plant operational efficiency, profitability and safety. We provide engineering solutions by offering training, technical services, best practices, and engineering designs to meet the specific needs of our partner clients. Since 1997, KLM Technology Group has been providing engineering, operations, and maintenance support for the hydrocarbon processing industry.

WWW.KLMTECHGROUP.COM Engineering Solutions, Standards, and Software



Check Valve Failures

Check valves are important safety devices in piping. Check valves have been utilized in the process industry for many years to keep material from flowing the wrong way and causing operational or safety concerns. One common mistake is installing the check valve backwards and blocking the process flow. There is normally an arrow on the check valve designating the proper flow direction, indicating the proper installation position. There have been cases where the manufacturer showed the arrow incorrectly, which greatly hindered troubleshooting.

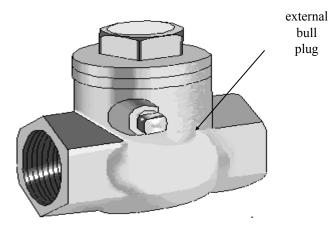
Case I - In December 1991, a chemical plant in Saudi Arabia (2) experienced a release of propane gas due to a check valve shaft blowout. The incident followed a process upset in the facility's ethylene plant, where the inadvertent shutdown of a cracked gas compressor resulted in downstream flow instabilities and initiated a 13 hour period of surging in the unit's propane refrigeration compressor.

During this period, the check valves installed in the propane refrigeration compression system slammed closed repeatedly. The shaft of the compressor's third stage discharge valve eventually separated from its disk and was partially ejected from the valve. The shaft was not fully ejected because its path was blocked by an adjacent steam line inches away from the valve, keeping about 70 mm of the shaft's length within the valve body.

Propane gas began to leak out of the valve around the gap between the shaft and its stuffing box until operators discovered the leak and shut down the compressor. Operators also discovered that the valve's drive shaft counterweights had broken off of the drive shaft and had been propelled approximately 16 meters (45 feet) from the valve.

The facility was fortunate that an adjacent steam line kept the shaft from being fully ejected from the valve, thus limiting the leak rate and preventing an accident of potentially greater severity. It was also fortunate that no one was struck by the counterweights when they were propelled from the valve.

A subsequent investigation and analysis of the check valve's internal components revealed that the dowel pin, which secured the drive shaft to the valve flapper, had sheared, and the shaft key had fallen out of its key-way. The investigation report also revealed that facility maintenance records indicated a long history of problems with the check valves installed there. The valves were installed in 1982, and due to continuing valve malfunctions, underwent repair or modification in 1984, 1986, 1987, 1989, and 1990. These repairs and modifications included replacement of damaged counterweight arms, replacement of seals and gaskets, replacement of dowel pins and internal keys, and installation of external shaft "keepers".

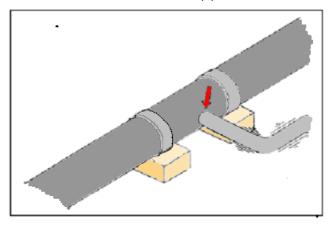

Case 2 – An incident with a similar failure mechanism occurred in an Ethylene Plant in Texas in June 1997 (2). The check valve was on the process gas compressor discharge line, which had high flow, high pressure and high temperature, along with compressor vibration; however, the investigation team found no evidence that these temperature and pressure limits were exceeded at any time prior to or during the accident. The check valve was installed on the fifth stage of the compressor and had an internal diameter of 36 inches and weighed 3.2 tons. The valve had a design limit pressure of 480 psig, and a design limit temperature of 115 degrees F.

The drive shaft penetrates the pressure boundary through a stuffing box. The exterior portion of the drive shaft is connected to the pneumatic piston and counterweight, and the interior portion of the shaft is coupled directly to the valve disk using a cylindrical hardened steel dowel pin and a steel rectangular bar key. This arrangement provides a counter weight to partially balance the weight of the valve disk, and provides the pneumatic power assist to maintain the valve closed as described above.

This check valve was the same design as the previous check valve and had the same failure mechanism. The pneumatic assist assembly became unattached from the check valve, leading to loss of hydrocarbon containment and a major unit fire. The unit was down for several weeks for repair.

This fire resulted in minor process operator injuries, public road closures, and property damage both within the olefin unit and to off site business. The EPA and OSHA undertook an investigation of this accident because of its severity, its effects on the public, and "the desire to identify those root causes and contributing factors of the event that may have broad applicability to industry, and the potential to develop recommendations and lessons learned to prevent future accidents of this type".

Case 3 - An Ethylene Plant in Louisiana had a near miss from a check valve failure in 1999. The check valve had an external bull plug, which allowed the check valve swing pin to be installed. The bull plug slowly rotated out over time leading to loss of hydrocarbon containment on a medium pressure ethane feed line. The line was isolated, copious amounts of water were applied to the leak, and fortunately the vapor did not find a source of ignition.



This check valve was far away from a source of vibration such as a compressor. The root cause of the incident is was not totally identified but one theory is that normal piping vibration caused the bull plug to rotate. The Ethylene plant reviewed all check valves in hydrocarbon service and installed an anti rotation locking device to prevent the bull plugs from rotating and causing a loss of hydrocarbon containment.

Small Bore Piping in Compressor Discharge Piping

Since 1997, sixteen incidents attributed to vibration fatigue failure of piping within compressor stations and pump stations were reported to the Canadian National Energy Board (3). The fractures associated with these incidents typically initiated near welded junctions where small diameter pipe (NPS 2 or smaller) was tied into a larger pipe. The typical location where this occurred is on the discharge piping immediately downstream of a compressor/pump unit. The consequences of these failures include facilities shutdown, worker injuries, loss of product and site contamination.

Although vibration fatigue has been deemed to be the immediate cause of all these failures, poor design and lack of effective piping support is considered the basic cause of the incidents. Designs included poor support for the smaller ipe components, sizing (length, diameter and thickness) of the piping itself, and lack of considerationfor additional stresses on the pipe-to-pipe junction in situations where a valve or regulator was installed at the remote end of the small diameter pipe. This resulted in

bending stresses at the junction being increased to the point of failure.

Vibration levels imparted to the piping adjacent to compressor/pump units should be monitored and managed. Piping configurations potentially at risk such as the one described above should be investigated and modified to manage any vibration, which may impact the pipe and associated junctions.

Case 4 - An Ethylene Plant in Malaysia had a major near miss from small bore piping on the discharge of a propylene refrigeration compressor in 2002. The compressor discharge piping had very high vibrations from unit commissioning. The original diagnosis of the high vibrations was the piping network, and several solutions were implement on the piping network without success. The root cause of the high vibrations was eventually found to be the compressor rotor.

One guideline is to restrict the small-bore piping to a safe distance from the discharge of the compressor to limit piping fatigue failure. A three quarter inch stub and valve on the fourth stage of the propylene compressor at 15 bar gauge (160 psig) discharge pressure experienced the high vibration from the compressor and failed, leaving an open $\frac{3}{4}$ inch line. The resulting massive loss of containment went unnoticed because the propylene vapor was at a high temperature 70 C (155 degrees F) and did not cause a vapor cloud.

The compressor was shut down and even with the massive loss of containment, greater than 10 tons of propylene in the battery limits of a functioning ethylene plant, the vapor cloud did not find a source of ignition.

Piping Low Temperature Embrittlement

Piping low temperature embrittlement is the loss of ductility, toughness, and impact strength that occurs in some metals at low temperatures. Normal carbon steel piping is rated for -20 F (-29 degrees C) at atmospheric pressure. This is also about the vaporization temperature of liquid Propane and Propylene (-49 F). In units with propane and lighter components, there is the possibility to exceed the low temperature limit of normal carbon steel.

Carbon steel piping is typically used in services with temperatures above -10 to -20 degrees F. At temperatures below -10 to -20 degrees F. normal carbon steel loses ductility and strength and the metal becomes brittle and can be susceptible to brittle fracture. Impact testing can certify the use of carbon steel piping in services as cold as -49 degrees F, and is named "killed" carbon steel.

Partners to the Top

Summit Technology Management is a technical consultancy group, providing specialized services and training to improve process plant operational efficiency, profitability and safety. We provide engineering solutions by offering training, technical services, best practices, and equipment to meet the specific needs of our partner clients.

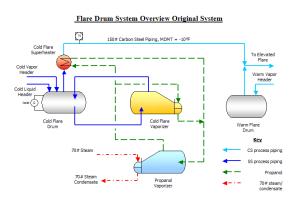
- Basic Design Packages
- Detailed Design Packages
- Commissioning of Process Units
- Process Engineering Studies
- Bench Marking of Process Units
- Regional Training Conferences & In -House Training
- Singapore & Malaysia Company Registration & Set Up
- Specialty Equipment: Distillation Equipment, Filter Skid Packages, Compressor Knockout/Scrubber Skid Packages, Mercury Removal Skid Packages

www.summit-tech-mtg.com

John A. Reid (4) put together list of ethylene plant hydrocarbon incidents. He noted four incidents where The event sequence was the ethylene product went off low temperature embrittlement cause line failures. Cases he noted included:

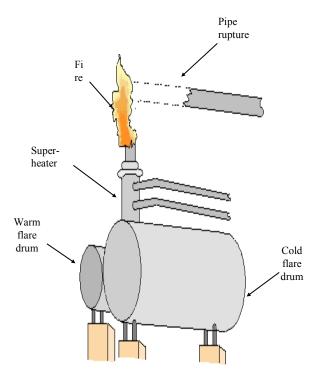
Charles, La.

Chocolate Bayou Olefin Unit


ties

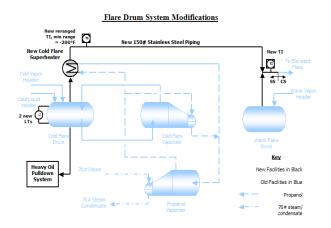
Gas Leak, Explosion and Fire at Quantum's drocarbon containment. fatalities

Case 5 - An incident occurred in January 2002 at an Ethylene plant in Louisiana. The Ethylene Plant published the incident in the AIChE Ethylene Producers Conference in 2004 (5) and in a conference in Asia in 2002 (6) to increase safety awareness in the process industry.


The plant was Olefins Ethane Cracker with a flow scheme of the DeMethanizer first and a back end acetylene converter. An off-spec event on 1/4/02 at the acetylene converter led to flaring of ethylene product via the unit cold flare drum. Through a sequence of events, the cold flare drum overhead line fell to below its minimum design metallurgy temperature. On 1/5/02, the cold temperatures led to brittle fracture of the cold flare drum overhead line, loss of hydrocarbon containment, and ultimately an explosion and fire.

The cold flare drum contents are vaporized and superheated with a closed loop propanol system. Heat is supplied to the propanol system with 70-pound steam, which is about 270 F. The vaporizer and super heater heats the cold flare drum material from cryogenic temperatures to above the minimum design metal temperature of the cold flare drum carbon steel overhead piping.

specification on acetylene and initiating flaring of liquid ethylene product began. The acetylene converter outlet analyzer was in error, which allowed the ethylene splitter inventory to be contaminated with acetylene prior 1. 1965 Explosion and Fire Due to Cold Brittle to corrective action being taken. A portion of the off Flare Line Fracture at PCI Olefin Unit in Lake spec liquid ethylene product was consumed by internal customers, with the balance being flared via the cold flare drum. Malfunction of the cold flare drum vaporizer 2. 1966 Flare System Explosion - Monsanto's and super heater allowed the cold flare drum overhead line temperature to fall sharply.


3. 1975 DePropanizer - Explosion in a Naphtha A low temperature alarm sounded as the overhead flare Cracking Unit – Dutch State Mines – 14 fatali line temperature fell to 0 F, and the thermocouple went bad at a value of -13 F. With the cold flare drum overhead line running below its minimum design tempera-4. 1989 Cold Brittle Line Fracture Results in ture of -10 F, the pipe ruptured, resulting in loss of hy-The hydrocarbon released Morris Illinois Ethane/Propane Cracker - two found an ignition source, resulting in an explosion and fire.

The root causes of the incident included the vaporizer and super heater exchanger fouling, which had reduced heat transfer capacity of the cold flare system. Once flaring began, the cold flare drum overhead line experienced low temperature resulting in the brittle fracture of cold flare drum overhead piping due to operation below the minimum design temperature of the carbon steel line.

The final stress that ultimately caused the brittle fracture of the piping has not been identified, but could have been any number of internal or external stresses. I) External stress - Hard rain that came at the time of event, 2) Internal stress - Contraction of the cold flare line due to temperature gradient.

The incident causes an explosion and damage to equip- tip to mix the hydrocarbons with air for complete comment, but no first aid or recordable incidents to personnel. bustion. This mixing reduces the flare smoking and envi-As a result of the incident the ethylene plant upgraded ronmental damage from carbon monoxide. many carbon steel systems to stainless steel, which has a lower temperature limit.

Hot Tapping Safely and Process Concerns

Hot Tapping is used in plant maintenance activities to obtain access to a pressurized line or vessel. Hot tapping involves welding on a piece of equipment, typically a spool piece to which a valve is then connected. The types of equipment include pipelines, vessels or tanks that contain steam, natural gas or flammable liquids under pressure, in order to install additional connections to reroute or to block the flow in a line. It is commonly used to replace or add sections of pipeline without the interruption of service for air, gas, water, steam and petrochemical distribution systems. The hot tap process is utilized to install a new working valve or to control the de-pressuring of the equipment.

During the hot tap process a drill bit assembly is connected to the new spool piece and a new working valve. The These six case studies provide many incites into piping new valve is attached to the line and the drill assembly is installed and the hole drilled. The bit is retracted past the valve, which can then be closed. A flow or line can then be fitted into the valve. The American Petroleum Institute has guidelines for precautions to take during hot taps.

One of the main concerns of hot tapping is the metal shavings, which are produced by either drilling or cutting. Some of the metal shavings will enter into the process and could be carried downstream and cause problems by en- 2. tering pumps or strainers. Therefore, careful planning must be made to determine if the metal shavings will cause a problem down stream.

During the initial planning of the hot tap one aspect to look at would be to tap from the bottom, which would give you the best chance of retaining most of the metal shavings. However, there is also a concern about shavings entering the seat of the valve. The rule of thumb would be never tap at 5 o'clock or 7 o'clock as shavings could get into the seat and keep the valve from closing.

Case 6 - An olefins producer in Louisiana had two ethylene plants that shared a single flare area. The two steam lines to the flares were at one point only 100 feet apart. Whenever a unit upset occurs, steam is utilized in the flare

At times during unit upsets there can be a shortage of steam. This shortage can lead to additional flaring at the very time you need steam to reduce the smoking flare. Therefore, to address this scenario, the ethylene producer decided to connect the two flare steam lines together. When one unit was having operational problems, the adjacent unit could provide steam to the flare and potentially have the first unit recover faster while reducing overall flaring, with the additional economic benefit of being able to produce on specification product faster. The two adjacent steam lines were hot tapped and a line installed to connect the two new hot tap valves.

At the next unit upset the line was utilized to reduce the overall flaring and optimize unit production. Unfortunately, some metal shavings were left in the steam lines. These metal shavings were carried to the flare steam ring and blocked a portion of the steam ring above the steam line connection to the steam ring.

The steam ring no longer had uniform steam distribution as a portion of the ring was blocked by the hot tap metal shavings. This was not fully known until the next major unit outage when the flare tip was upgraded to reduce the smoking. Due to the mal-distribution of the steam the flare now smoked constantly, even at low flaring scenarios. The producer was then fined for the continuously smoking flare.

Guidelines

Ι.

safety concerns. Petroleum plant personnel should review these case studies and consider implementing the guidelines where applicable for increased safety.

- Check Valve Installations: Review large and small check valve installations for potential release scenarios. For large highpressure check valves review the internals and the sited case study failure mechanism. Install anti rotation devices on external bull plugs.
- Small Bore Piping on Compressor Discharge Piping:
- Review and reduce small-bore piping on compressor discharge piping. One guideline is to restrict the small-bore piping to a safe distance from the discharge of the compressor to limit piping fatigue failure.
- Vibration levels imparted to the piping adjacent to compressor / pump units should be monitored and managed. Piping configurations potentially at risk should be investigated and modified to manage any vibration, which may impact the pipe and associated junctions.

3. Low Temperature Embrittlement Concerns: Understand piping low temperature embrittlement concerns and potential release scenarios. There have been multiple piping failures and hydrocarbon releases from piping low temperature embrittlement. Review the process temperatures and the piping metallurgies where the temperatures are below -49 F, which is approximately liquid propane / propylene.

Safety Perform Hot Taps: 4.

When making a hot tap, certain steps should be followed prior to starting the actual tap. The Piping network safety is a concern for all hydrocarbon following steps consist of basic procedures used in completing the hot top installation;

- A) Perform a site visit, to determine if the job safety analysis information meets the proper criteria for that particular hot tapping operation.
- B) Recognize and identify the hazards of the equipment, then outline steps to mitigate those hazards into a job safety sheet.
- C) Review the job and file a basic safety plan.

- D) The proposed hot tap area should be marked on the piping network.
- E) Minimize the piping network pressure to the practical operations limit.
- F) A plan for isolating the piping network should be prepared for an emergency.

Conclusions

producers even though piping may be the considered the safest part of the plant. The authors goals and hopes are that these case studies and guidelines provide additional safety incite into piping design, operation and prevention of future incidents.

is an Engineering Consultants focused on providing engineering and technical services to the oil and gas industry. We develop innovative and cost effective solutions and helping our clients to achieve high performance from their assets by providing expertise, novel methods and appropriate tools -FEED to Detailed engineering Design -Independent Design Verification -Risk Assessments -Asset Integrity Management -Risk Based Inspection -Reliability Centered Maintenance

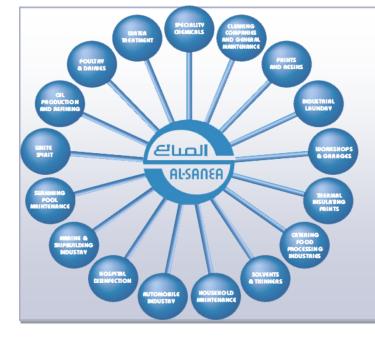
-Fitness for service Assessment -Remaining Life Assessment

-Finite Element Analysis

PT. Dinamika Teknik Persada

PT Dinamika Teknik Persada provide Engineering Design to the upstream and downstream sectors of oil & gas industry:

- Processing plants
- Pressure vessels
- Heat exchangers
- Piping systems
- Onshore pipelines
- Offshore pipelines
- Offshore platforms
- Drilling rigs


Address : Ruko Golden Boulevard Blok K No. 1-2 Jl. Pahlawan Seribu, BSD City, Serpong Tangerang 15322 – Indonesia Phone / Fax +62 21 53150601 Email : info@dtp-eng.com Website: www.dtp-eng.com

References

- I. Chemical Processing Safety: Fundamentals with Applications; Crowl and Louvar; Prentice-Hall; 1990
- EPA/OSHA Joint Chemical Accident Investiga tion Report of the Shell Chemical Company's Deer Park, Texas Olefin Complex Fire of June 22, 1997. EPA Document 550-R-98-005
- Canadian National Energy Board Safety Adviso ry, File 3750-A000-8 3 December 2003
- 4. Ethylene Plant Safety Incidents, John A Reid, unpublished
- Kuo A., Pitt R, "Flare Line Failure Case, What Have We Learned", 16th Annual Ethylene Prod ucers. Conference Session T8001, Ethylene Plant Safety, New Orleans, LA, April 25-29, 2004
- 6 Tarkiz Ruslan, Tham Chee Mun, Karl Kolmetz, "Flare Safety Overview", 7th Regional Olefin Committee Technical Conference, Kerteh, Malaysia, 16-18 September 2002

Chemical Processing Safety: Fundamentals with

ІАСРЕ	.Page	3
KLM Technology Group	.Page	7
Summit Technology Management	Page	10
PT. Dinamika Teknik Persada	.Page	13
Al Sanea Chemical Products	.Page	14

Looking for cleaning supplies, industry cleaning chemicals, odour control products, paint thinner solvents, white spirit, industrial laundry chemicals, chaffing fuel, and laundry detergent supplies in Kuwait? Al Sanea Chemical Products has the best chemical products' supply for all your needs.

Al Sanea Chemical Products Sabhan Industrial Area, Street No. 84, Block No.8, Plot No. 185, Kuwait (P.O. Box 5629, Safat 13057, Kuwait) Tel: 00965 – 24747623 / 24734991 / 24734952/ 24736740 Fax: 00965 - 24760678 Email: info@alsanea.com Web: www.alsanea.com

BIODATA

KARL K. KOLMETZ

Over twenty five years of progressive experience in the design, construction, commissioning, and operations management of process units from the US Gulf Coast to Alaska through Asia. Strengths encompass design details that originate from a strong operations background, with the ability to incorporate positive ideas from differing sources.

Publications include authoring and co-authoring over 40 technical papers on a variety of subjects for product recovery, distillation troubleshooting, training, project management, and process design with safety and environmental concerns. Papers have appeared in Oil and Gas Journal (5), Hydrocarbon Processing (1), Chemical Engineering Progress (1) and Hydrocarbon Engineering (1). Conference papers have been presented at the AIChE Conferences, the Indian Oil & Gas Conference, the Japan Petroleum Institute Refining Conference, Oil and Fats International Congress, Best Practices in Process Plant Management, and the Asean Regional Olefins Conferences, as well as others.

In 2004 He was the Distillation Editor of the Asia Pacific Journal of Chemical Engineering and is currently authoring a book on process equipment design. The book has 32 chapters on a variety of subjects including, Pumps, Distillation Columns, Process Control, LPG, LNG and LPG. He has a Bachelor of Science in Chemical Engineering from The University of Houston. He is a member of the American Institute of Chemical Engineers and International Association of Certified Practicing Engineers. He has been asked to serve as an industrial advisor to a board helping set the Chemical Engineering Curriculum in Malaysia.

STEPHEN J.WALLACE

Has over 20 years of technical experience in the design, construction, commissioning and operations management of process units located in the Continental United States and South East Asia. He has a strong background in the manufacturing of a wide variety of chemical process tech-

nologies and product categories including; cryogenic liquids, ethylene, propylene, benzene and toluene extraction, styrene, polyurethane, polymers and steam & power plant operations.

Mr.Wallace has an established track record in the field of process safety. He possesses extensive experience performing hazard analyses using a variety of techniques, operating experiences as a production manager, process safety consultant and manager of safety and health, and author of over 25 presentations and publications in the field of safety and loss prevention.

Stephen has a Bachelor of Science in Chemical Engineering from The University of Kentucky. He is registered Professional Engineer (by exam) in the field of Chemical Engineering. He is certified by the board of Certified Safety Professionals (BCSP) as a certified Safety Professionals.

TIONG MEE SHEE

Has over 15 years experiences, has bachelor degree of chemical engineering from Universiti Malaysia Sabah. Shee currently Manager R&D/Process Chemist at Ken-Rich Chemical Production Sdn.Bhd.

